Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 8(2): e2300413, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37880935

RESUMO

Adequate sleep is essential for the biological maintenance of physical energy. Lack of sleep can affect thinking, lead to emotional anxiety, reduce immunity, and interfere with endocrine and metabolic processes, leading to disease. Previous studies have focused on long-term sleep deprivation and the risk of cancer, heart disease, diabetes, and obesity. However, systematic metabolomics analyses of blood, heart, liver, spleen, kidney, brown adipose tissue, and fecal granules have not been performed. This study aims to systematically assess the metabolic changes in the target organs caused by sleep deprivation in vivo, to search for differential metabolites and the involved metabolic pathways, to further understand the impact of sleep deprivation on health, and to provide strong evidence for the need for early intervention.


Assuntos
Metabolômica , Privação do Sono , Camundongos , Animais , Privação do Sono/complicações , Privação do Sono/metabolismo , Sono , Metaboloma , Obesidade
2.
Front Nutr ; 10: 1171806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492592

RESUMO

Objective: Diets high in glucose or fat contribute to an increased prevalence of the diseases. Therefore, the objective of the current research was to observe and evaluate the impact of dietary components on different metabolomic profiles in primary tissues of mice. Methods: For 8 weeks, diet with high-glucose or-fat was given to C57BL/6 J mice. The levels of metabolites in the primary tissues of mice were studied using gas chromatography-mass spectrometry (GC-MS) and analyzed using multivariate statistics. Results: By comparing the metabolic profiles between the two diet groups and control group in mice main tissues, our study revealed 32 metabolites in the high-glucose diet (HGD) group and 28 metabolites in the high-fat diet (HFD) group. The most significantly altered metabolites were amino acids (AAs; L-alanine, L-valine, glycine, L-aspartic acid, L-isoleucine, L-leucine, L-threonine, L-glutamic acid, phenylalanine, tyrosine, serine, proline, and lysine), fatty acids (FAs; propanoic acid, 9,12-octadecadienoic acid, pentadecanoic acid, hexanoic acid, and myristic acid), and organic compounds (succinic acid, malic acid, citric acid, L-(+)-lactic acid, myo-inositol, and urea). These metabolites are implicated in many metabolic pathways related to energy, AAs, and lipids metabolism. Conclusion: We systematically analyzed the metabolic changes underlying high-glucose or high-fat diet. The two divergent diets induced patent changes in AA and lipid metabolism in the main tissues, and helped identify metabolic pathways in a mouse model.

3.
Appl Environ Microbiol ; 89(6): e0066123, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37289076

RESUMO

Maintenance of cell wall integrity is important for fungal cell morphology against external stresses and even virulence. Although the transcription factor Rlm1 is known to play major regulatory roles in the maintenance of cell integrity, the underlying mechanism of how Rlm1 contributes to cell wall integrity and virulence in phytopathogenic fungi remains unclear. Here, we demonstrated that CcRlm1 plays important roles in cell wall maintenance and virulence in the poplar canker fungus Cytospora chrysosperma. Among putative downstream targets, CcChs6 (chitin synthase) and CcGna1 (glucosamine 6-phosphate N-acetyltransferase) were found to be direct targets of CcRlm1 and shown to function in chitin synthesis and virulence. Furthermore, we found stronger induction of poplar defense responses when challenged with these gene deletion mutants. Collectively, these results suggest that CcRlm1 plays a critical role in the regulation of cell wall maintenance, stress response, and virulence by directly regulating CcChs6 and CcGna1 in C. chrysosperma. IMPORTANCE Cytospora chrysosperma causes canker diseases on woody plants, and the molecular basis of its infection is not well understood. This study shows that CcRlm1 is the major regulator of chitin synthesis and virulence of the poplar canker fungus. Our research contributes to further understanding the molecular basis of the interaction between C. chrysosperma and poplar.


Assuntos
Populus , Fatores de Transcrição , Fatores de Transcrição/genética , Regulação da Expressão Gênica , Populus/microbiologia , Parede Celular/metabolismo , Quitina , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
4.
Clin Exp Hypertens ; 45(1): 2190529, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36922753

RESUMO

OBJECTIVES: Hypertension is a chronic disease with multiple causative factors that involve metabolic disturbances and can cause various complications. However, the metabolic characteristics of hypertension at different stages are still unclear. This study aimed to explore the metabolic changes induced by hypertension at different ages. METHODS: Spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were divided into four groups according to age: 5-week-old SHR (n = 6), 5-week-old WKY rats (n = 6), 32-week-old SHR (n = 6), and 32-week-old WKY rats (n = 6). Metabolites were analyzed in primary tissues (serum, heart, lung, kidney, brain, and brown adipose) using a non-targeted metabolomics approach. RESULTS: Thirty-five metabolites and nine related metabolic pathways were identified in 5-week-old SHR, mainly related to the metabolism of amino acids. Fifty-one metabolites and seven related metabolic pathways were identified in the 32-week-old SHR, involving glycolysis, lipid, and amino acid metabolisms. CONCLUSION: This experiment elucidates the metabolic profile of SHR at different ages and provides a basis for predicting and diagnosing hypertension. It also provides a reference for the pathogenesis of hypertension.


Assuntos
Aminoácidos , Hipertensão , Animais , Ratos , Aminoácidos/metabolismo , Metabolômica
5.
Front Endocrinol (Lausanne) ; 14: 1107162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761194

RESUMO

Purpose: Type 1 diabetes is characterized by elevated blood glucose levels, which negatively impacts multiple organs and tissues throughout the body, and its prevalence is on the rise. Prior reports primarily investigated the serum and urine specimen from diabetic patients. However, only a few studies examined the overall metabolic profile of diabetic animals or patients. The current systemic investigation will benefit the knowledge of STZ-based type 1 diabetes pathogenesis. Methods: Male SD rats were arbitrarily separated into control and streptozotocin (STZ)-treated diabetic rats (n = 7). The experimental rats received 50mg/kg STZ intraperitoneal injection daily for 2 consecutive days. Following 6 weeks, metabolites were assessed via gas chromatography-mass spectrometry (GC-MS), and multivariate analysis was employed to screen for differentially expressed (DE) metabolites between the induced diabetic and normal rats. Results: We identified 18, 30, 6, 24, 34, 27, 27 and 12 DE metabolites in the serum, heart, liver, kidney, cortex, renal lipid, hippocampus, and brown fat tissues of STZ-treated diabetic rats, compared to control rats. Based on our analysis, the largest differences were observed in the amino acids (AAs), B-group vitamin, and purine profiles. Using the metabolic pathway analysis, we screened 13 metabolic pathways related to the STZ-exposed diabetes pathogenesis. These pathways were primarily AA metabolism, followed by organic acids, sugars, and lipid metabolism. Conclusion: Based on our GC-MS analysis, we identified potential metabolic alterations within the STZ-exposed diabetic rats, which may aid in the understanding of diabetes pathogenesis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Complexo Vitamínico B , Ratos , Masculino , Animais , Diabetes Mellitus Experimental/metabolismo , Estreptozocina , Ratos Sprague-Dawley , Metabolômica/métodos
6.
BMC Pharmacol Toxicol ; 23(1): 87, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443830

RESUMO

Tacrolimus (Tac) is a common immunosuppressant that used in organ transplantation. However, its therapeutic index is narrow, and it is prone to adverse side effects, along with an increased risk of toxicity, namely, cardio-, nephro-, hepato-, and neurotoxicity. Prior metabolomic investigations involving Tac-driven toxicity primarily focused on changes in individual organs. However, extensive research on multiple matrices is uncommon. Hence, in this research, the authors systemically evaluated Tac-mediated toxicity in major organs, namely, serum, brain, heart, liver, lung, kidney, and intestines, using gas chromatography-mass spectrometry (GC-MS). The authors also employed multivariate analyses, including orthogonal projections to the latent structure (OPLS) and t-test, to screen 8 serum metabolites, namely, D-proline, glycerol, D-fructose, D-glucitol, sulfurous acid, 1-monopalmitin (MG (16:0/0:0/0:0)), glycerol monostearate (MG (0:0/18:0/0:0)), and cholesterol. Metabolic changes within the brain involved alterations in the levels of butanamide, tartronic acid, aminomalonic acid, scyllo-inositol, dihydromorphine, myo-inositol, and 11-octadecenoic acid. Within the heart, the acetone and D-fructose metabolites were altered. In the liver, D-glucitol, L-sorbose, palmitic acid, myo-inositol, and uridine were altered. In the lung, L-lactic acid, L-5-oxoproline, L-threonine, phosphoric acid, phosphorylethanolamine, D-allose, and cholesterol were altered. Lastly, in the kidney, L-valine and D-glucose were altered. Our findings will provide a systematic evaluation of the metabolic alterations in target organs within a Tac-driven toxicity mouse model.


Assuntos
Glicerol , Tacrolimo , Animais , Camundongos , Tacrolimo/toxicidade , Frutose , Sorbitol , Inositol
7.
Front Pharmacol ; 13: 958882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188576

RESUMO

Chemotherapy-induced intestinal mucositis (CIM) is a major dose-limiting side effect of chemotherapy, especially in regimens containing irinotecan (CPT-11). Several studies on the pathologic mechanisms of CIM focused on both the genomics and molecular pathways triggered by chemotherapy. However, systematic evaluation of metabolomic analysis in irinotecan-induced intestinal mucositis (IIM) has not been investigated. This study aimed to comprehensively analyze metabolite changes in main tissues of IIM mouse models. Male ICR mice were assigned to two groups: the model group (n = 11) treated with CPT-11 (20 mg/kg daily; i.p.) and the control group (n= 11) with solvent for 9 days. Gas chromatography-mass spectrometry (GC-MS) was used to investigate the metabolic alterations in the serum, intestinal, colonic, hepatic, and splenic samples of mice between two groups by multivariate statistical analyses, including GC-MS data processing, pattern recognition analysis, and pathway analysis. Forty-six metabolites, including hydrocarbons, amino acids, lipids, benzenoids, hydroxy acids, and amines, had significant changes in levels in tissues and sera of IIM mouse models. The most important pathways related to the identified metabolites were the glycerolipid metabolism in the colon and aminoacyl-tRNA biosynthesis; glycine, serine, and threonine metabolism; and glyoxylate and dicarboxylate metabolism in the liver. Our study firstly provided a comprehensive and systematic view of metabolic alterations of IIM using GC-MS analysis. The characterizations of metabolic changes could offer profound and theoretical insight into exploring new biomarkers for diagnosis and treatment of IIM.

8.
Ecotoxicol Environ Saf ; 242: 113888, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872488

RESUMO

Fluoride is widely present in the environment. Excessive fluoride exposure leads to fluorosis, which has become a global public health problem and will cause damage to various organs and tissues. Only a few studies focus on serum metabolomics, and there is still a lack of systematic metabolomics associated with fluorosis within the main organs. Therefore, in the current study, a non-targeted metabolomics method using gas chromatography-mass spectrometry (GC-MS) was used to research the effects of fluoride exposure on metabolites in different organs, to uncover potential biomarkers and study whether the affected metabolic pathways are related to the mechanism of fluorosis. Male Sprague-Dawley rats were randomly divided into two groups: a control group and a fluoride exposure group. GC-MS technology was used to identify metabolites. Multivariate statistical analysis identified 16, 24, 20, 20, 24, 13, 7, and 13 differential metabolites in the serum, liver, kidney, heart, hippocampus, cortex, kidney fat, and brown fat, respectively, in the two groups of rats. Fifteen metabolic pathways were affected, involving toxic mechanisms such as oxidative stress, mitochondrial damage, inflammation, and fatty acid, amino acid and energy metabolism disorders. This study provides a new perspective on the understanding of the mechanism of toxicity associated with sodium fluoride, contributing to the prevention and treatment of fluorosis.


Assuntos
Fluoretos , Metabolômica , Animais , Biomarcadores , Fluoretos/toxicidade , Cromatografia Gasosa-Espectrometria de Massas/métodos , Masculino , Metabolômica/métodos , Ratos , Ratos Sprague-Dawley
9.
Heliyon ; 8(7): e09869, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35855991

RESUMO

Background: Vancomycin is a glycopeptide antibiotic that is commonly used for severe drug-resistant infections treatment. Application of vancomycin frequently leads to severe ototoxicity, hepatotoxicity, and nephrotoxicity; however, the comprehensive metabolic analysis of vancomycin-induced toxicity is lacking. Purpose: This study attempted to investigate the metabolic changes after vancomycin administration in mice. Methods: Experimental mice (n = 9) received continuous intraperitoneal injection of vancomycin (400 mg/kg) every day for 7 days, and mice in control group (n = 9) were treated with the same amount of normal saline. Pathological changes of the kidney were examined using haematoxylin and eosin (HE) staining. A gas chromatography-mass spectrometry (GC-MS) approach was used to identify discriminant metabolites in serum and various organs including the heart, liver, kidney, spleen, cerebral cortex, hippocampus, inner ear, lung, and intestine. The potential metabolites were identified using orthogonal partial least squares discrimination analysis (OPLS-DA). Subsequently, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG, http://www.kegg.jp) were employed to depict the metabolic pathways. Results: Compared with the control group, the vancomycin induced 13, 17, 27, 22, 16, 10, 17, 11, 10, and 7 differential metabolites in the serum, liver, kidney, heart, cerebral cortex, lung, spleen, intestine, hippocampus, and inner ear, respectively. Further pathway analyses identified that amino acids metabolism, fatty acids biosynthesis, energy metabolism, and lipid metabolism were disrupted after VCM exposure. Conclusion: Vancomycin affects the metabolism in various organs in mice, which provides new insights for identification of vancomycin-induced toxicity, and facilitate to better understanding of the metabolic pathogenesis of vancomycin.

10.
Nutr Metab (Lond) ; 19(1): 41, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761356

RESUMO

OBJECTS: Caloric restriction (CR) is known to extend lifespan and exert a protective effect on organs, and is thus a low-cost and easily implemented approach to the health maintenance. However, there have been no studies that have systematically evaluated the metabolic changes that occur in the main tissues affected by CR. This study aimed to explore the target tissues metabolomic profile in CR mice. METHODS: Male C57BL/6J mice were randomly allocated to the CR group (n = 7) and control group (n = 7). A non-targeted gas chromatography-mass spectrometry approach and multivariate analysis were used to identify metabolites in the main tissues (serum, heart, liver, kidney, cortex, hippocampus, lung, muscle, and white adipose) in model of CR. RESULTS: We identified 10 metabolites in the heart that showed differential abundance between the 2 groups, along with 9 in kidney, 6 in liver, 6 in lung, 6 in white adipose, 4 in hippocampus, 4 in serum, 3 in cortex, and 2 in muscle. The most significantly altered metabolites were amino acids (AAs) (glycine, aspartic acid, L-isoleucine, L-proline, L-aspartic acid, L-serine, L-hydroxyproline, L-alanine, L-valine, L-threonine, L-glutamic acid, and L-phenylalanine) and fatty acids (FAs) (palmitic acid, 1-monopalmitin, glycerol monostearate, docosahexaenoic acid, 16-octadecenoic acid, oleic acid, stearic acid, and hexanoic acid). These metabolites were associated with 7 different functional pathways related to the metabolism of AAs, lipids, and energy. CONCLUSION: Our results provide insight into the specific metabolic changes that are induced by CR and can serve as a reference for physiologic studies on how CR improves health and extends lifespan.

11.
Pharmacol Res ; 179: 106224, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35430377

RESUMO

Ghrelin has recently been associated with the development of diabetes comorbid with depression, but its underlying molecular mechanisms remains poorly understood. Here, molecular and histological methods were applied both in vivo and in vitro studies to investigate the mechanisms of ghrelin in diabetes comorbid with depression. Our results demonstrated the anti-depressive, anxiolytic, and neuroprotective effects of ghrelin, as evidenced by the amelioration of anxiety- and depression-like behaviors, reduction in apoptosis, and preservation of neuron integrity in streptozotocin (STZ)-treated rats. STZ treatment induced M1-phenotypic microglial polarization, accompanied by neuroinflammation, which was reversed by ghrelin treatment. Further exploration showed that autophagy was inhibited, the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and nuclear factor (NF)-κB signaling pathway were activated in STZ rats. In line with the in vivo results, ghrelin could suppress the NLRP3 inflammasome and NF-κB signaling pathway activation via the amelioration of impaired autophagic flux in microglial BV2 cells. Importantly, clinical evidence further verified the anti-inflammatory and antidepressant effects of ghrelin. Collectively, these results suggested that ghrelin ameliorates diabetes-associated behavioral deficits and NLRP3 inflammasome activation via autophagic flux enhancement, highlighting the importance of ghrelin as a potential target of immune regulation in diabetes comorbid with depression.


Assuntos
Diabetes Mellitus , Inflamassomos , Animais , Autofagia , Grelina/farmacologia , Grelina/uso terapêutico , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Estreptozocina/farmacologia
12.
J Inflamm Res ; 14: 2941-2953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239317

RESUMO

PURPOSE: Inflammatory bowel diseases (IBD) are a chronic inflammatory disease, which affects almost all tissues in the body. Previous studies mainly focused on breathing, fecal, and urine samples of patients with IBD. However, there is no comprehensive metabolomic analysis of the serum, colon, heart, liver, kidney, cortex, hippocampus, and brown fat tissues. Therefore, the aim of our study is to evaluate the utility metabolomic analysis of target tissues in the pathogenesis of IBD in exploring new biomarkers for early diagnosis and treatment. METHODS: Male Sprague-Dawley rats were randomly allocated to control and DSS-treated groups (n = 7). Dextran sulfate sodium (DSS) was orally administered for 6 weeks. Gas chromatography-mass spectrometry (GC-MS) was used for metabolite determination, multivariate statistical analysis was used to identify metabolites that were differentially expressed in two groups. RESULTS: Our results showed that 3, 11, 12, 6, 5, 13, 13, and 11 metabolites were differentially expressed between the DSS treatment group and the control group in the serum, colon, heart, liver, kidney, cortex, hippocampus, and brown fat tissues, respectively. The most significant change of metabolites in the study was amino acid (L-alanine, L-glutamic acid, L-phenylalanine, L-proline, L-lysine, L-isoleucine, L-tryptophan, L-norleucine, L-valine, glycine, serine, L-threonine), organic acid (citric acid, 3-hydroxybutyric acid, propanoic acid), glucide (D-arabinose, D-fructose) and purine (9H-purin-6-ol, D-ribose) profiles. Several pathways were affected according to the integrated pathway analysis. These pathways ranged from amino acid metabolism (such as alanine, aspartate, and glutamate metabolism, glutathione metabolism) to purine metabolism (aminoacyl-tRNA biosynthesis). CONCLUSION: Using GC-MS-based profiling of metabolite changes, these results may provide a more comprehensive view for IBD and IBD-related diseases and improve the understanding of IBD pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...